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Abstract
Juvenile ungulates are generally more vulnerable to predation than are 
adult ungulates other than senescent individuals, not only because of their 
relative youth, fragility, and inexperience, but also because of congenital 
factors. Linnell et al.’s (Wildl. Biol. 1: 209-223) extensive review of 
predation on juvenile ungulates concluded that research was needed to 
determine the predisposition of these juveniles to predation. Since then, 
various characteristics that potentially predispose juvenile ungulates have 
emerged including blood characteristics, morphometric and other condition 
factors, and other factors such as birth period, the mother’s experience, 
and spatial and habitat aspects. To the extent that any of the physical or 
behavioral traits possessed by juvenile ungulates have a genetic or heritable 
and partly independent epigenetic component that predisposes them to 
predation, predators may play an important role in their natural selection. 
We	review	the	possible	influence	of	these	characteristics	on	predisposing	
juvenile ungulates to predation and discuss natural selection implications 
and potential selection mechanisms. Although juvenile ungulates as a class 
are likely more vulnerable to predation than all but senescent adults, our 
review presents studies indicating that juveniles with certain tendencies or 
traits	are	killed	more	often	than	others.	This	finding	suggests	that	successful	
predation on juveniles is more selective than is often assumed. Because we 
are unable to control for (or in some cases even measure) the myriad of other 
possible vulnerabilities such as differences in sensory abilities, intelligence, 
hiding	abilities,	tendency	to	travel,	etc.,	finding	selective	predation	based	
on the relatively few differences we can measure is noteworthy and 
points	to	the	significant	role	that	predation	on	juveniles	has	in	the	natural	
selection of ungulates. Future research should compare characteristics, 
especially	 those	known	 to	 influence	 survival,	between	animals	killed	by	
predators versus those killed by other sources as well as survivors versus 
non-survivors to better understand predation’s role in natural selection.

Introduction

Predation is an important agent in evolution [1-3]. For predation to impact the natural 
selection of ungulates, the probability of individual ungulates being killed by predators 
must vary, and survivors must reproduce [4]. Predation’s effect on ungulate genetic 
transmission is greatest on pre-breeders because this cohort has not yet transmitted 
any genes. Predation on pre-breeders including neonates, young-of-the-year, and 
other juveniles, may have a high impact on ungulate population dynamics because 
variable juvenile survival (coupled with the high and stable adult survival seen 
in	most	 ungulate	 populations,	 [4])	 could	 greatly	 influence	 population	 fluctuations	
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[5-9]. Although equivalent variation in adult survival would have a greater impact 
on ungulate population dynamics [8,10], variation in juvenile survival may have a 
greater realized impact [9] because adult survival routinely exhibits little variability 
(likely a canalized trait against temporal variation) [11]. Predators select juveniles 
and very old animals disproportionately [12-23]. However, predation’s effect in 
natural selection is not equal across all species of juvenile ungulates but depends in 
part on length of vulnerability [24-27], for example whether neonates are followers 
or hiders (see Selection mechanisms).
Neither is predation’s effect necessarily equal across all juvenile ungulates of a single 
species, for predation’s precise effect may depend on the differing hunting techniques 
of various predators [28,29]. For example, coursers such as wolves (Canis spp.) and 
hyaenas (Crocuta crocuta)	elicit	a	flight	response	followed	by	sorting	of	the	herd	[30],	
and coursing generally leads to the capture of prey in poorer condition [12,22,29,31]. 
This relationship may be important in the natural selection for generally healthy and 
strong juvenile ungulates [17]. In contrast, large cats such as cougars (Puma concolor) 
usually kill by stalking and surprise attack where the condition of the prey might not 
always be a strong predictor of capture [32-34]. However, stalking predators may be 
important in the natural selection of the mothers’ and neonates’ movements, hiding 
ability	[17],	alertness,	and	awareness	of	their	surroundings	(here	we	define	neonates	
as individuals from birth to 1-week of age). Intermediate predators (between coursers 
and stalkers) such as coyotes (C. latrans)	may	 influence	selective	pressure	on	 the	
general health and strength and the hiding ability and awareness of neonates.
Within ungulate species, predation effects also vary greatly over the range of 
densities or predator/prey ratios at which they exist. Caribou, for example, range from 
barrenground populations where hundreds of thousands of offspring are produced in 
aggregations and predator/caribou ratios are very low [35], to mountain caribou or 
woodland caribou that occur at relatively low densities with other ungulate prey and 
therefore higher predator/caribou ratios [36,37].
A variety of studies (see [38] for review) has shown predation to be an important 
mortality source for juvenile ungulates (including moose, Alces alces; caribou, 
Rangifer tarandus; bison, Bison bison; elk, Cervus elaphus; white-tailed deer, 
Odocoileus virginianus; pronghorn, Antilocapra americana; and Thomson’s gazelle, 
Gazella thomsoni) and demonstrates that some carnivores are particularly effective 
predators on juveniles (including wolf, C. lupus; grizzly bear, Ursus arctos; black 
bear, U. americanus; cougar; bobcat, Lynx rufus; cheetah, Acinonyx jubatus; and 
African wild dog, Lycaon pictus) [1,39-47].
Here we review research on characteristics that potentially predispose individuals 
to predation within the vulnerable juvenile age class. These studies show either 
different characteristics between the predator-killed juveniles versus those not killed 
by predators or varying characteristics between survivors and non-survivors where 
predation was either the leading or a major cause of death. While the 1st type of 
study clearly depicts predation’s potential impact on natural selection, the 2nd type 
of study may merely show that predators are selecting the same characteristics that 
otherwise	predispose	juveniles	to	mortality	in	general	and	thus,	superficially	appear	
to indicate little impact on natural selection. However, the 2nd type of study is still 
important to our review because even if predation and other causes of mortality (e.g., 
starvation) are acting on the same traits, the selection pressure from predation is 
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likely to be greater and thus, animals in mid-condition are less likely to survive than 
in the absence of predation. Linnell et al.’s [38] review found neonatal mortality (from 
all causes) averaged 47% ± 24 (N = 68) in areas with predators but only averaged
19% ± 8 (N = 6) in predator-free areas. This difference suggests that even if the factors 
influencing	mortality	were	the	same	with	or	without	predators,	selection	acting	on	
those factors would likely be stronger in the presence of predation.
Characteristics that might predispose juveniles to predation could be primary causes 
of that predisposition or they may merely be associated with the true cause. These 
characteristics could be environmentally based, genetic, or both. Studies of red deer 
(Cervus elaphus) demonstrate that juvenile survival has a genetic basis [48,49] and 
suggest	 that	 “associations	 between	 fitness	 and	 genotype	 are	 common”	 [49:	 434].	
Also, recent epigenetic (“heritable changes in gene expression and function that 
cannot	be	explained	by	changes	in	DNA	sequence”	[50:	106])	research	indicates	that	
in some cases environmentally-induced natural variation can be inherited at least 
partly independent of genetic variation [50] and that this variation can affect behavior 
[51].	Specific	links	between	genotype,	genetic	expression,	and	vulnerable	phenotypes	
are	not	yet	known	for	many	characteristics	that	influence	juvenile	survival,	because	
these associations are studied so little in wild populations [49,50]. Therefore we are 
unable to estimate the effect size of epigenetic and genetic heritability on juvenile 
mortality. However, we review as many of these characteristics as possible, with the 
assumption that there are likely genetic (and possibly epigenetic [50]) components to 
at least some of them [49] that may be important to selection.

Blood characteristics

Blood characteristics (especially long-term seasonal trends among collective 
characteristics)	 can	 reflect	 an	 animal’s	 internal	 condition	 [52,53].	 Therefore,	
mortality studies where blood is sampled upon capture can help determine whether 
the	condition	deficiencies	indicated	by	blood	characteristics	influence	the	individual’s	
susceptibility to predation. While blood characteristics can signify individual condition 
differences,	they	may	also	reflect	differences	in	age,	sex,	season,	reproductive	status,	
recent feedings, capture methods, and the processing of samples [54-59]. Thus, 
emphasis should be placed on similar (or ideally, standardized) methods in research 
done for comparisons among studies. As metabolic pathways are better understood, 
interpretation	of	blood	profiles	will	improve.
Currently, no single blood characteristic is known to consistently and accurately 
predict general ungulate condition [52,57,58,60-64]. In fact, in isolation, both high 
and low values of some blood characteristics can be associated with either diseased 
or healthy animals (e.g., serum urea nitrogen, white blood cells counts, creatinine, 
gamma globulins; [52,53]). Despite these limitations, emerging research shows that 
blood characteristics are useful in determining predisposition to mortality.

Hematology

Changes in white blood cell count (WBC) are associated with a variety of infections 
[52], and mean WBC was lower in white-tailed deer neonates in Minnesota that died 
≤	1 week of birth compared to survivors [65].
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Sams et al. [66] found that lower mean corpuscular hemoglobin concentration 
(MCHC), an erythrocyte index, was sometimes associated with low-protein diets in 
captive white-tailed deer fawns. MCHC was lower in Minnesota white-tailed deer 
neonates that died ≤	1 week of birth compared to survivors [65].
Mean hemoglobin concentration, packed cell volume, and mean corpuscular volume 
(MCV) were lower in Minnesota white-tailed deer neonates that died at 2-4 weeks 
old [65]. Captive white-tailed deer does fed a low-protein diet had fawns with lower 
MCV, an erythrocyte index [66]. Severely starved mule-deer fawns had decreased 
hemoglobin and erythrocytes [67].

Total protein and gamma globulins

Hypoprotenemia can be associated with trauma (including wounds or burns) or renal 
disease	[52].	Depressed	blood	protein	may	reflect	a	poor	diet	[52,57].	Wyoming	elk	
calves that survived through approximately 2 months (Jul 31) had higher total protein 
[68].
Serum gamma globulin (GG) is associated with antibodies, and in young animals lower 
levels	may	reflect	their	developing	immune	systems	[57]	or	delayed	development	of	
the neonate’s gut function due to nutritionally restricted mothers [69]. Depressed GG 
has also been associated with increased septicemia, diarrhea, and neonatal mortality in 
captive ungulates [70-74]. GG was lower in mortalities of white-tailed deer neonates 
< 21-days old than in survivors and was important in predicting mortality to 21 days 
where predation and emaciation were major sources of mortality [75]. Higher levels 
of GG in northern Yellowstone elk neonates were associated with increased summer 
survival, and predation was the major mortality source [47].

Glucose

Juvenile ungulates experiencing hypoglycemia may be under extreme starvation or 
other digestive/nutritional disorders [52,76]. Elevated glucose levels in elk calves 
were associated with well-fed, rapidly growing calves as compared to their smaller, 
nutritionally restricted counterparts [77]. Sams et al. [66] found that lower blood 
glucose was sometimes associated with captive white-tailed deer fawns born to does 
fed a low-protein diet. Glucose was higher in Wyoming elk calves surviving through 
approximately 2 months (31 Jul) where predation was the major mortality source 
[68].	While	glucose	levels	can	be	artificially	elevated	during	capture	[59],	evaluating	
relative differences among juveniles within a study, rather than absolute values 
compared across studies, may still indicate relative condition.

Plasma enzymes

Alkaline phosphatase (AP) is a hormone concentrated in osteoblasts associated with 
growth (e.g., pregnancy, antler development, and juvenile growth) [76]. Calves with 
elevated AP are likely in a growth phase, whereas depressed AP indicates possible 
malnutrition [52,77]. In general, larger elk calves have higher AP at birth [77] and 
food-restricted red deer have lower AP [78]. Wild pronghorn fawns in better nutritional 
condition had higher AP [63]. Elk consuming better diets in areas following a burn 
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also had higher AP than elk without access to burned areas [78]. AP was higher in 
Wyoming elk calves that survived to approximately 2 months (Jul 31) [68].
Serum gamma glutamyltransferase (GGT) concentration is an index of colostral 
absorption	efficiency	[79,80],	and	depressed	 levels	may	indicate	 inability	 to	nurse	
[81]. GGT was lower in Oklahoma white-tailed deer neonate mortalities than 
survivors < 21-days old and was an important predictor of mortality to 21-days old 
[75].
Lactic dehydrogenase (LDH) is an enzyme important in lactic acid – pyruvic acid 
conversion and is found in many tissues. Elevated LDH is associated with tissue 
breakdown and stress and excitability during capture [57]. In captive white-tailed 
deer fawns, elevated LDH was associated with dams fed a low-protein diet [66]. 
In humans, elevated LDH may indicate multiple disorders including problems with 
lungs, heart, and liver tissues [52]. LDH was lower in Wyoming elk calves that 
survived to approximately 2 months from birth (31 Jul) [68].

Serum urea nitrogen

Serum urea nitrogen (SUN) is an indicator of protein quality in the diet and has been 
related to nutritional condition in white-tailed deer [82,83]. Isolated interpretation of 
SUN	is	difficult	as	moderately	high	levels	may	indicate	increasing	levels	of	dietary	
protein intake [76], while high-energy diets may cause low SUN due to the rumen 
microbes	more	 efficiently	 using	 the	 proteins,	 thus	 producing	 less	 urea	 [84].	 SUN	
was higher in white-tailed deer fawns with higher survivability in one study [43], 
but tended to be lower in those that survived to 1 week in another [65] as well as 
in elk calves that survived to approximately 2 months (31 Jul) [68]. SUN was also 
higher in food-restricted red deer than in deer fed a control diet [78]. Extremely high 
SUN in non-survivors may indicate catabolism of body proteins if nursing bouts are 
inadequate [62,65,78,82,83], or it may indicate renal failure [52,78].

NEFA and triglycerides

Depressed	non-esterified	fatty	acids	(NEFAs)	may	indicate	marginal	fat	reserves	[85]	
and a poor diet [67]. NEFAs were lower in Minnesota adult and fawn white-tailed 
deer killed by wolves in late winter as compared to deer not killed by wolves [58].
Triglycerides, a measure of fat metabolism, can be an indicator of pathology in 
humans	when	 too	high	or	 low,	but	 little	 is	known	about	 the	 influence	of	different	
levels on wildlife. Triglycerides tended to be lower in white-tailed deer neonates 
in Minnesota surviving through week 1 [65]. In contrast, serum triglycerides were 
elevated in a pronghorn herd in better long-term nutritional condition than in 2 other 
herds [63].

Electrolytes

Mean phosphorus concentration was higher in Wyoming elk calves that survived 
to approximately 2 months (31 Jul) [68]. Calves with reduced phosphorus may be 
suffering	from	dietary	deficiencies	as	the	lack	of	phosphorus	is	often	associated	with	
a simple lack of intake [52].
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Mean potassium concentration was lower in Minnesota white-tailed deer neonates 
that died at ≤	1 week and when 2-4 weeks old [65]. Decreased serum potassium may 
indicate inadequate nursing and lower nutritional condition [83]. In contrast, Sams et 
al. [66] found that higher potassium concentrations were sometimes associated with 
captive white-tailed deer fawns born to does fed a low-protein diet.
Decreased calcium has been associated with starvation [52], and higher calcium with 
improved condition in adult moose [57]. Mean calcium concentration was lower in 
Minnesota white-tailed deer fawns that died when 5-12 weeks old [65]. In contrast, 
Sams et al. [66] found higher calcium concentrations were sometimes associated 
with captive white-tailed deer fawns born to does fed a low-protein diet.

Cortisol

Increased cortisol may indicate increased catabolism due to restricted nutrition or 
capture-induced stress [56,83,86-88]. Cortisol was higher in nonsurviving white-
tailed deer neonates in Minnesota than in survivors 5-12 weeks old [65].

Tumor necrosis factor-α

Tumor	necrosis	factor-α	(TNF-α)	is	a	cytokine	secreted	by	T-cells	[89]	that	functions	
as a major mediator in host immune responses including the production of interleukin-6 
[90],	lysis	of	virally	infected	cells,	and	antitumor	activity	[91].	Elevated	TNF-α	likely	
indicates the animal is stressed and undergoing an immune response [92], and long 
exposure to elevated levels has been associated with body wasting [92]. Neonatal 
white-tailed	deer	that	died	tended	to	have	higher	immunoreactive	TNF-α	levels	than	
did survivors < 21-days old [92]. Similarly, in Minnesota white-tailed deer fawn non-
survivors	through	1	week	and	between	2-4	weeks	old	tended	to	have	higher	TNF-α	
levels	[65].	In	contrast,	TNF-α	levels	were	not	 important	predictors	of	survival	 in	
northern	Yellowstone	elk	calves	through	their	first	20	weeks	[47].

Morphometric and other condition factors

Birth weight

In many studies where predation was the major cause of death among juveniles, 
increased survival has been correlated with heavier birth weight. This may be because 
birth	 weight	 reflects	 condition	 [93]	 and	 because	 light-born	 neonates	 often	 have	
difficulty	nursing,	which	confounds	their	nutritional	depression	[94].	In	west	central	
Montana, heavier neonate elk calves also had increased survival [9]. In Yellowstone 
National Park, predators killed more light-born elk calves during 1987-1990 [95], 
although this was not the case in elk neonates during 2003-2005 [47]. Estimated 
birth weight was higher in Minnesota white-tailed deer neonate survivors [43] and in 
those that survived when ≤	1-week old and during weeks 5-12 than in those that died 
[65]. Similarly, the majority of white-tailed deer fawns in an Illinois study killed by 
canids were light to average in mass near birth [96]. In moose calves, time to death 
was	significantly	related	to	birth	weight	[97],	and	in	caribou,	calves	with	greater	birth	
weight had higher summer survival [36].
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Size

Skeletal development (e.g., girth, hind-leg length) of Minnesota white-tailed deer was 
less in neonates that died within 1 week than in survivors [65]. Skeletal development 
along	with	birth	weight	likely	reflects	neonatal	robustness	[93].

Marrow fat content

Marrow-fat content can be used as a 1-way test to indicate the extent to which an 
animal has used fat reserves. Because marrow fat is 1 of the last fat stores to be 
accessed, an animal with low marrow fat has depleted most other fat reserves and is 
likely in poor condition [98]. Wolf-killed, 6-10-month old, white-tailed deer fawns 
had	significantly	lower	femur-marrow	fat	than	those	killed	by	accidents	in	the	same	
area [99,100]. Interpretation of marrow-fat content in very young animals remains 
difficult	because	the	rate	of	marrow	deposition	is	not	well	studied	[101].

Maternal and grandmaternal condition

Wolves killed more caribou calves in Denali National Park after winters of deep snow 
when these calves were still in utero and presumably their mothers were in poorer 
nutritional condition than after winters with average snow depth [31]. Moose calves 
in 2 areas of Alaska, where predation was a major mortality source, born to mothers 
in poor condition the previous autumn had higher mortality than those from mothers 
in good condition [97,102]. In Minnesota, where predation on juvenile white-tailed 
deer is a major source of mortality [43], survival of deer to 2 years was positively 
influenced	by	the	grandmother’s	nutritional	condition	[103].

Other factors

Birth period

Whether a neonate is born during the pre-peak, peak, or post-peak period of the 
birthing	season	may	have	an	important	influence	on	survival	[24,27,104,105].	Pre-
peak neonates survive better if born before predators congregate on birthing grounds 
or before predators sharpen their search image. Early-born neonates also may have 
longer access to high-quality forage (e.g., bighorn sheep, Ovis canadensis, [106], and 
mountain goats, Oreamnos americanus, [107]). Increased forage access may allow 
young ungulates to attain superior condition before the nutritionally restrictive winter 
and may give them an advantage in escaping predators [106,108-110]. For example, 
early-born moose calves in southcentral Alaska, where bear predation was a major 
source of juvenile mortality, had higher survival than those born later [44]. Roe deer 
(Capreolus capreolus) neonates born during the peak were more likely to die from 
predation [111].
Alternatively,	 neonates	 may	 benefit	 from	 being	 born	 during	 the	 peak	 of	 birthing	
due to the dilution effect [112-114], the confusion effect [115], and/or the increased 
defense afforded by numerous vigilant mothers [24,104,116-118]. For example, 
early wildebeest (Connochaetes taurinus) studies in Tanzania concluded that birth 
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synchrony in time and space effectively swamped predators, resulting in predators 
killing fewer calves during peak birthing [24]. Caribou in Denali National Park, 
born within 2-3 days of the median birth date had 50% better survival following 
low-snowfall winters than calves born earlier or later [37]. Similarly, Mentasta-herd 
caribou in Alaska had higher survival if born during peak birthing [36].
Conversely, late-born calves have been associated with mothers in poorer condition 
[119,120], predisposing them to greater mortality. In Alaskan moose calves, time to 
death decreased as birth date increased [97], and late-born Alaskan caribou calves 
had lower survival than peak or early-born calves [35]. In Yellowstone National 
Park, predators killed more late-born elk calves during 1987-1990 [95], and during 
2003-2005, peak-born calves had the highest summer survival [47]. Also, early-born 
elk calves had lower survival in west-central Montana [9]. Conclusions about the 
importance of birth period in mortality studies may differ depending on whether 
births are classed into 2 categories (e.g., early and late) or into 3 categories (e.g., 
early, peak, and late) and whether the study measures only the core birthing period 
(i.e., 80% of births) or a longer period.

Mother’s experience

The learning ability and experience of a mother is likely an important selection 
factor in terms of her ability to hide and move her offspring, her defensive tactics, 
her detection of predator abundance, knowledge of escape routes, and access to 
food resources [108,121-124]. Semi-captive, white-tailed deer dams ≥	4-yr old in 
Michigan lost proportionally only slightly more neonates when bears were present vs. 
absent,	whereas	younger	dams	lost	significantly	more	when	bears	were	present	[122].	
Fawn: doe ratios during Dec and Apr in Minnesota white-tailed deer subject to wolf 
and black bear predation were positively related to maternal age [123]. Similarly, in 
another Minnesota study where black bear and wolf predation equally accounted for 
all fawn mortalities fawns from mothers > 4-yr old weighed more and survived better 
[43].

Spatial and habitat aspects

Other prey attributes including preferences for herd versus dispersed grouping 
behavior,	 open	 versus	 closed	 habitats,	 etc.	 may	 also	 influence	 predation	 effects.	
Caribou from both the Mentasta and Denali herds in Alaska survived better when 
born in core calving areas rather than in peripheral areas [36,37]. Mentasta-herd 
caribou juveniles born in areas of mottled snow survived longer than those born in 
sedge-tundra habitat [36]. Roe deer fawns that used woodland suffered less predation 
than those that used pasture [111]. In Porcupine-herd caribou calves, survival was 
higher at lower elevations, and predation tended to be greater in higher areas [35]. 
In Yellowstone National Park, elk calves born near a residential area (Mammoth 
Hot Springs) survived much longer than calves born elsewhere along Yellowstone’s 
northern range, likely due to reduced predator densities near residential areas [47]. 
Similarly, higher elk calf: cow ratios were documented near roadsides in Jasper 
National Park, Canada, in contrast to areas near wolf dens [125].
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Implications

Predation may select for physical or behavioral traits of juvenile ungulates that have 
a genetic component (and possibly a heritable and partly independent epigenetic 
component [50]) and so may be important in natural selection. The amount of 
phenotypic variation in a trait explained by genetic factors (e.g., additive genetic 
variance)	 exclusive	of	 the	 influence	of	 environmental	 factors	has	been	defined	as	
the trait’s genetic heritability [126]. While it is the heritability of animals’ physical 
traits	that	are	best	documented	(e.g.,	collared	flycatcher,	Ficedula albicollis, tarsus, 
wing, tail, and beak lengths [127]; bighorn ram, O. canadensis, body weight and 
horn size [128]; average heritability of skeletal metric traits in Rhesus macaques, 
Macaca mulatta [129]; human body weight and height [130]), heritabilities of some 
behavioral and mental traits have also been documented (e.g., exploratory behavior 
in mice, Mus	[131];	flight	time	in	crossbred	tropical	beef	cattle,	Bos indicus x Bos 
taurus [132,133]; human personality [134]; human IQ [130]). Furthermore, other 
behavioral traits have a genetic component such as, in mice, maternal care [135], 
aggressive behavior [136], and anxiety [137]. Other traits including disease (e.g., 
human juvenile arthritis [138,139]) and juvenile survivability (e.g., red deer calf 
[48,49]) also have genetic components. Interestingly, mate choice behavior of mice 
was recently shown to have a heritable epigenetic component three generations 
removed from the treatment event [51]. To the extent that any of the physical or 
behavioral traits possessed by juvenile ungulates have a heritable component that 
predisposes them to predation, predators may play an important role in their natural 
selection. Even if these traits also predispose juvenile ungulates to increased mortality 
from non-predation sources, predation is still important in that it likely increases the 
selective pressure on these traits.
Selective predation on vulnerable juveniles may shape ungulates in many ways. 
Selective predation on juveniles in poor condition, as documented above by a 
variety of factors (e.g., collective blood characteristics, low marrow-fat content, low 
birth weight, reduced size), would generally lead to a juvenile cohort containing 
healthier, more-robust individuals. However, other factors might be selected for as 
well. For example, increased predation on juveniles whose grandmothers had been 
malnourished may select for strains with better ability to secure higher quality forage 
over the long term, resulting in ungulates able to extract more nutrients from limited 
resources (effectively increasing the carrying capacity of a given habitat). Although 
this principle was documented as a cohort effect [103], there is no evidence to suggest 
that the principle does not apply in general.
As for synchronized birthing, high predation may not necessarily result in more 
synchronized birthing [140], but high predation on juveniles born outside the peak 
birthing period should do so. However, if enough juveniles are born during the peak, 
a small number born outside the peak may survive on average equally well, provided 
there are few enough to be under the threshold of alerting predators and provided the 
neonates are not born outside of forage constraints (i.e., before spring green-up or too 
late to acquire fat reserves needed for winter). Nevertheless, early births to maximize 
summer weight gain and development, and late births attributed to young females 
and those in poor condition could offset predation’s effect.
If there is selection for juvenile ungulates and their mothers to use certain kinds 
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of habitat this might lead to a general shift in landscape utilization. Ungulates 
could move into habitats of poorer forage to avoid high predator densities or into 
habitats with less cover where they might be less likely to be ambushed by stalking 
predators.
The implications of selective predation on juvenile ungulates that we have detailed 
above are limited by the lack of reported differences among juveniles, by the scarcity 
of what can be measured, and by the 1-way nature of the measurements (e.g., they 
can	only	show	if	an	animal	was	not	fit).	For	example,	an	animal	with	high	marrow-
fat killed by a predator may not have been close to starving, but it could possess 
other unmeasured vulnerabilities such as myopia (near-sightedness). Because we are 
unable to control for (or in some cases even measure) the myriad of other possible 
vulnerabilities such as differences in sensory abilities, intelligence, hiding abilities, 
tendency	 to	 travel,	 etc.,	 finding	 selective	 predation	 based	 on	 the	 relatively	 few	
differences	we	can	measure	is	noteworthy	[12:	260]	and	points	to	the	significant	role	
that predation on juveniles has in the natural selection of ungulates.
Also,	many	of	the	factors	that	influence	vulnerability	(e.g.,	birth	weight,	sex)	may	be	
interactive with other factors or with the environment [49]. For example, a particular 
juvenile with low alkaline phosphatase (presumably poorer condition) in a predator-
rich environment may be less vulnerable than a juvenile with normal alkaline 
phosphatase, depending on the relative ability of their respective mothers to hide 
them.	While	little	research	has	been	done	on	the	links	between	genetics	and	fitness	
in	wild	populations	because	of	numerous	logistical	difficulties,	what	has	been	done	
suggests the existence of such links may be common [49]. Continued research is 
also	needed	to	determine	the	extent	to	which	heritable	epigenetics	may	influence	an	
organism’s	“resistance	to	predators”	[50:	111].	Indeed,	even	basic	research	is	required	
to further epigenetic understanding such as determining “the rate of spontaneous 
epimutations	in	natural	populations,	let	alone	their	stability	over	time”	[50:	113].

Selection mechanisms

Infant ungulates can be categorized into followers and hiders [141-143]. Follower 
neonates generally accompany their mothers just after birth while hiders remain 
concealed for days to weeks after birth with few but long visits from their mother 
for	 feedings	 [144].	 Superficially,	 selective	 predation	 on	 neonate	 followers	 (e.g.,	
wildebeest, bison, caribou) appears relatively straightforward. Follower neonates in 
poor nutritional condition would presumably be easier to catch, all else being equal, 
when chased by predators than those in better condition, although some studies have 
not found this [37]. The mechanisms of selective predation on neonate hiders (e.g., 
white-tailed and mule deer, red deer, elk) that are more vulnerable than others are 
not readily apparent because presumably all hiders are vulnerable if detected by a 
predator	at	least	for	their	first	few	days	of	life	[145,146]	until	they	are	able	to	escape	
by running [147], or reach the age when they join their mother or the herd. As with 
followers, nutritional condition likely plays a role in selective predation, especially 
because hiders able to grow quickly can better escape predators.
However, neonates may also be vulnerable to predation due to many types of factors 
other than nutritional condition. Such factors as the defensive, perceptive, physical, 
and behavioral traits and abilities of both the neonate and its mother could all play 
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a role in the security of the neonate from predation. Examples are many that remain 
currently immeasurable [1,13,145-198] and include the mother’s ability to select a 
birthing site away from predators; and the mother’s and neonate’s abilities to detect 
predators, to gain information from the vigilance of the herd, and to learn from 
experience.

Conclusions

Although juvenile ungulates as a class are likely more vulnerable to predation than 
all but senescent adults, our review presents studies indicating that juveniles with 
certain	tendencies	or	traits	are	killed	more	often	than	others.	This	finding	suggests	
that successful predation on juveniles is more selective than is often assumed.
Regardless of the natural-selection mechanisms and our inability to measure many 
of the probable important predisposing factors to predation, predation on juveniles in 
poor condition would likely lead to overall better condition of the remaining cohort 
(and therefore, better condition, on average of their offspring as well). This effect 
is best documented in coursing predators (e.g., wolves, [12]; spotted hyenas, [29]). 
Predation by stalking predators (e.g., cougars, [32-34]) might not result in a similar 
increase in overall condition of the survivors due to differences in the mechanisms 
of prey selection but may result in other changes, such as prey habitat selection and 
other behaviors that may reduce exposure to ambush by stalking predators [199,200]. 
Therefore, the nature of the selective role of predation on juvenile ungulates will be 
different for each type of predator.
Finally, to better elucidate the ways in which natural selection may be occurring 
through predation on the more vulnerable individuals within the generally vulnerable 
juvenile age-class, it is important that juvenile-ungulate-mortality studies screen 
for	 factors	 that	may	 influence	 vulnerability	 to	 predation,	 especially	 those	 known	
to	 influence	 survival.	 Importantly,	 future	 research	 should	 compare	 characteristics	
between animals killed by predators versus those killed by other sources as well 
as survivors versus non-survivors to better understand predation’s role in natural 
selection.
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